After becoming paralyzed from a motor bike accident, this patient never imagined walking again, nonetheless through using his own brain power. Researchers and neurosurgeons at the University of California have successfully accomplished the unthinkable: enabling an individual to work by bypassing and rewiring the motor networks in our central nervous system.
US researcher Dr An Do, from the University of California at Irvine, who co-led the study, said: "Even after years of paralysis the brain can still generate robust brain waves that can be harnessed to enable basic walking. We showed that you can restore intuitive, brain-controlled walking after a complete spinal cord injury. This non-invasive system for leg muscle stimulation is a promising method and is an advance of our current brain-controlled systems that use virtual reality or a robotic exoskeleton."
"We hope that an implant could achieve an even greater level of prosthesis control because brain waves are recorded with higher quality. In addition, such an implant could deliver sensation back to the brain, enabling the user to feel their legs."
US researcher Dr An Do, from the University of California at Irvine, who co-led the study, said: "Even after years of paralysis the brain can still generate robust brain waves that can be harnessed to enable basic walking. We showed that you can restore intuitive, brain-controlled walking after a complete spinal cord injury. This non-invasive system for leg muscle stimulation is a promising method and is an advance of our current brain-controlled systems that use virtual reality or a robotic exoskeleton."
"We hope that an implant could achieve an even greater level of prosthesis control because brain waves are recorded with higher quality. In addition, such an implant could deliver sensation back to the brain, enabling the user to feel their legs."